Luke Wilson

Two years into an Electrical Engineering degree at Virginia Tech, I am an Applications Engineering Intern at Inertial Labs.

Recent Posts

The Inertial Labs miniAHRS and Directional Surveillance

Posted by Luke Wilson on Dec 22, 2020 11:17:41 AM

What is a Directional Survey?

A directional survey is a survey method that can be used to map a variety of underground drilling applications. Directional surveys are used to map a planned underground route by using aiding data provided from any combination of directional survey stations. [1] Directional survey stations serve as a reference point that corresponds to a measured depth along the actual bored path known as the actual well path. While the drill bores a hole along a planned route, data regarding the borehole inclination and azimuth is transmitted back to a computer that is controlled by an operator. This data allows the operator to control the speed and direction of the drill as it advances. Directional surveying enables the user to carry out operation with minimal disturbance to natural habitats and helps to reduce accidents that can occur from directional drilling, which is any drilling is not directly downwards. 

Read More

Topics: Surveying, Industrial, miniAHRS

Magnetometer Calibrations and the Inertial Labs INS-P

Posted by Luke Wilson on Sep 16, 2020 12:33:07 PM

Understanding The Magnetometer

Magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. (1) Though phonetically complex, magnetometers can be common devices used in everyday life such as compasses and metal detectors. In general, there are two basic types of survey magnetometers: vector and scalar magnetometers. Vector magnetometers measure magnitude and direction of a magnetic field. Alternatively, scalar magnetometers measure the absolute or vector magnetic field, using an internal calibration or known physical constants of the magnetic sensor.

Read More

Topics: INS-P, Magnetometer, calibration

Point Cloud Generation for Mapping and Scanning Industries Using the INS-B

Posted by Luke Wilson on Aug 10, 2020 9:00:00 AM

What is a Point Cloud?

A point cloud is created by scanning an area with a 3D Laser Scanner. This scan is then imported into post-processing software (unless desired accuracy is obtained in real-time) where errors are removed. After processing the data, modeling software is used where the clouds can either be geo-referenced to a ground plane or manipulated locally without reference. From here, point clouds are then exported into computer-aided design (CAD) or building information modeling (BIM) systems, where they can be manipulated further, generating meshes and applying boundary conditions to generate accurate and realistic 3D models (1). Even with an explanation of a point cloud it is still hard to understand what a point cloud is if one has not been familiarized with the technology. When the user performs a scan, the laser scanner sends out beams of light in many different directions. As these light beams are reflected to the scanner, the system uses a datalogger to record reflected positions as localized vectors. These scan files can contain as little as thousands of logged vectors or as many as millions, if not billions depending on the scanning project at hand. These 3D vectors are then used in the post-processing software to generate a visualized point cloud.

Read More

Topics: Surveying, Mapping, LiDAR, Point Cloud

Twenty Years in the Making: The Inertial Labs Robust and Modular Kalman Filter

Posted by Luke Wilson on Jul 9, 2020 5:29:25 PM

What is Sensor Fusion?

Sensor fusion plays a large role in any device that is attempting to produce estimated, quantifiable data. Sensor fusion is the ability to bring together inputs from multiple sensors to produce a single model whose result is more accurate than that of the individual inputs alone. There are three fundamental methods of sensor fusion:

  • Redundant Sensors- All sensors give the same information for the environment.
  • Complementary Sensors- The sensors provide independent, disjointed information about its environment.
  • Coordinated Sensors- The sensors collect information about its environment sequentially.

From there, the information is communicated in one of three different ways. In a centralized setup, all sensors provide information to a common central node. If the configuration is decentralized, no information is communicated between the sensors and the nodes. If it is a distributed organization, then the nodes interchange sensor information at a given rate.

Read More

Topics: GPS Denied Navigation, Remote Sensing, Sensor Fusion, Kalman Filter


Inertial Labs Inc.

Solutions for all PNT Applications

Established in 2001, Inertial Labs is a leader in position and orientation technologies for commercial, industrial, aerospace and defense applications. Inertial Labs has a worldwide distributor and representative network covering 20+ countries across 6 continents and a standard product line spanning from Inertial Measurement Units (IMU) to GPS-Aided Inertial Navigation Systems (INS). With application breadth on Land, Air, and Sea; Inertial Labs covers the gambit of inertial technologies and solutions.

What makes us different:

Subscribe Here!

Recent Posts